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Abstract

The preprocessing of large meshes to provide and optimize interactive visualization implies a complete reorganization that often
introduces significant data growth. This is detrimental to storage and network transmission, but in the near future could also affect
the efficiency of the visualization process itself, because of the increasing gap between computing times and external access times.
In this article, we attempt to reconcile lossless compression and visualization by proposing a data structure that radically reduces
the size of the object while supporting a fast interactive navigation based on a viewing distance criterion. In additionto this double
capability, this method works out-of-core and can handle meshes containing several hundred million vertices. Furthermore, it
presents the advantage of dealing with any n-dimensional simplicial complex, including triangle soups or volumetric meshes, and
provides a significant rate-distortion improvement. The performance attained is near state-of-the-art in terms of thecompression
ratio as well as the visualization frame rates, offering a unique combination that can be useful in numerous applications.
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1. Introduction

Mesh compression and mesh visualization are two fields
of computer graphics that are particularly active today, whose
constraints and goals are usually incompatible, even contradic-
tory. The reduction of redundancy often goes through signal
complexification, because of prediction mechanisms whose ef-
ficiency is directly related to the depth of the analysis. This
additional logical layer inevitably slows down the data access
and creates conflicts with the speed requirements of real-time
visualization. Conversely, for efficient navigation through a
mesh integrating the user’s interactions dynamically, thesignal
must be carefully prepared and hierarchically structured.This
generally introduces a high level of redundancy and sometimes
comes with data loss, if the original vertices and polyhedraare
approximated by simpler geometrical primitives. In addition to
the on-disk storage and network transmission issues, the data
growth implied by this kind of preprocessing could become
detrimental to the visualization itself since the gap between the
processing times and the access times from external memory is
increasing.

In this article, we attempt to reconcile compression and in-
teractive visualization by proposing a method that combines
good performance in terms of both the compression ratio and
the visualization frame rates. The interaction requirements of a
viewer and a virtual reality system are quite similar in terms of
the computational challenge but the two applications use differ-
ent criteria to decide how a model is viewed and updated. Our
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goal here is to take advantage of excellent view independent
compression and introduce distance-dependent updates of the
model during the visualization. As a starting point, the in-core
progressive and lossless compression algorithm introduced by
Gandoin and Devillers [1] has been chosen. On top of its com-
petitive compression ratios, out-of-core and LOD capabilities
have been added to handle meshes with no size limitations and
allow local refinements on demand by loading the necessary
and sufficient data for an accurate real-time rendering of any
subset of the mesh. To meet these goals, the basic idea con-
sists in subdividing the original object into a tree of indepen-
dent meshes. This partitioning is undertaken by introducing a
primary hierarchical structure (annSP-tree) in which the orig-
inal data structures (a kd-tree coupled to a simplicial complex)
are embedded, in a way that optimizes the bit distribution be-
tween geometry and connectivity and removes the undesirable
block effects of kd-tree approaches.

After a study of related works (Sec. 2) focusing on the
method chosen as the starting point (Sec. 3), our contribution
is introduced by an example (Sec. 4), then detailed in two com-
plementary sections. First, the algorithms and data structures
of the out-of-core construction and compression are introduced
(Sec. 5 and 6), then the visualization point of view is adopted to
complete the description (Sec. 7). Finally, experimental results
are presented and the method is compared to prior art (Sec. 8).

2. Previous Works

2.1. Compression

Mesh compression is a domain situated between computa-
tional geometry and standard data compression. It consistsin

Preprint submitted to Computer& Graphics May 4, 2009



efficiently coupling geometry encoding (the vertex positions)
and connectivity encoding (the relations between vertices), and
often addresses manifold triangular surface models. We dis-
tinguish single-rate algorithms, which require full decoding to
visualize the object, and multiresolution methods that allow one
to see the model progressively refined while decoding. Al-
though historically geometric compression began with single-
rate algorithms, we have chosen not to detail these methods
here. The reader can refer to surveys [2, 3] for more infor-
mation. For comparison purposes, since progressive and out-
of-core compression methods are very rare, Sec. 8 will referto
Isenburg and Gumhold’s well-known single-rate out-of-core al-
gorithm [4]. Similarly, lossy compression, whose general prin-
ciple consists in a frequential analysis of the mesh, is excluded
from this study.

Progressive compression is based on the notion of refine-
ment. At any time of the decoding process, it is possible to
obtain a global approximation of the original model, which can
be useful for large meshes or for network transmission. This
research field has been very productive for approximately 10
years, and rather than being exhaustive, here the choice has
been to adopt a historical point of view. Early techniques of
progressive visualization, based on mesh simplification, were
not compression-oriented and often induced a significant in-
crease in the file size, due to the additional storing cost of ahi-
erarchical structure [5, 6]. Afterward, several single-resolution
methods were extended to progressive compression. For exam-
ple, Taubinet al. [7] proposed a progressive encoding based on
Taubin and Rossignac’s algorithm [8]. Cohen-Oret al. [9] used
techniques of sequential simplification by vertex suppression
for connectivity, combined with position prediction for geom-
etry. Alliez and Desbrun [10] proposed an algorithm based on
progressive removal of independent vertices, with a retriangula-
tion step under the constraint of maintaining the vertex degrees
around 6. Contrary to the majority of compression methods,
Gandoin and Devillers [1] gave the priority to geometry encod-
ing. Their algorithm, detailed in Sec. 3, gives competitivecom-
pression rates and can handle simplicial complexes in any di-
mension, from manifold regular meshes to triangle soups. Peng
and Kuo [11] took this paper as a basis to improve the compres-
sion ratios using efficient prediction schemes (sizes decrease by
roughly 15%), still limiting the scope to triangular models.

2.2. Large meshes processing
Working with huge datasets implies to develop out-of-core

solutions for managing, compressing or editing meshes. Lind-
strom and Silva [12] proposed a simplication algorithm based
on [13] whose memory complexity is neither dependent on the
size of the input nor on the size of the output. Cignoniet al.
[14] introduced a data structure called Octree-based External
Memory Mesh (OEMM), which enable external memory man-
agement and simplification of very large triangle meshes, by
loading only selected sections in main memory. Isenburget
al. [15] developed a streaming file format for polygon meshes
designed to work with large data sets. Isenburget al. [16] pro-
posed a single-rate streaming compression scheme that encodes
and decodes arbitrary large meshes using only minimal memory

resources. Caiet al. [17] introduced the first progressive com-
pression method adapted to very large meshes, offering a way
to add out-of-core capability to most of the existing progressive
algorithms based on octrees. The next section pays particular
attention to out-of-core visualization techniques.

2.3. Visualization
Fast and interactive visualization of large meshes is a very

active research field. Generally, a tree or a graph is built to
handle a hierarchical structure which makes it possible to de-
sign out-of-core algorithms: at any moment, only necessary
and sufficient data are loaded into memory to render the mesh.
Level of detail, view frustum and occlusion culling are widely
used to adapt displayed data to the viewport. Rusinkiewicz and
Levoy [18] introduced QSplat, the first out-of-core point-based
rendering system, where the points are spread in a hierarchical
structure of bounding spheres. This structure can easily han-
dle levels of detail and is well-suited to visibility and occlusion
tests. Several million points per second can thus be displayed
using adaptive rendering. El-Sana and Chiang [19] proposed
a technique to segment triangle meshes into view-dependence
trees, allowing external memory simplification of models con-
taining a few millions polygons, while preserving an optimal
edge collapse order to enhance the image quality. Later, Lind-
strom [20] developed a method for interactive visualization of
huge meshes. An octree is used to dispatch the triangles into
clusters and to build a multiresolution hierarchy. A quadric er-
ror metric is used to choose the representative point positions
for each level of detail, and the refinement is guided by visibil-
ity and screen space error. Yoonet al. [21] proposed a similar
algorithm with a bounded memory footprint: a cluster hierar-
chy is built, each cluster containing a progressive submeshto
smooth the transition between the levels of detail. Cignoniet
al. [22] used a hierarchy based on the recursive subdivision
of tetrahedra in order to partition space and guarantee varying
borders between clusters during refinement. The initial con-
struction phase is parallelizable, and GPU is efficiently used to
improve frame rates. Gobbetti and Marton [23] introduced the
far voxels, capable of rendering regular meshes as well as tri-
angles soups. The principle is to transform volumetric subparts
of the model into compact direction-dependent approximations
of their appearance when viewed from a distance. A BSP tree
is built, and nodes are discretized into cubic voxels containing
these approximations. Again, the GPU is widely used to lighten
the CPU load and improve performance. Cignoniet al. [24]
proposed a general formalized framework that encompasses all
these visualization methods based on batched rendering. Re-
cently, Huet al. [25] introduced the first highly parallel scheme
for view-dependent visualization that is implemented entirely
on programmable GPU. Although it uses a static data structure
requiring 57% more memory than an index triangle list, it al-
lows real-time exploration of huge meshes.

2.4. Combined Compression and Visualization
Progressive compression methods are now mature (the rates

obtained are close to theoretical bounds) and interactive visu-
alization of huge meshes has been possible for several years.
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However, even if the combination of compression and visual-
ization is often mentioned as a perspective, very few papers
deal with this problem, and the files created by visualization
algorithms are often much larger than the original ones. In
fact, compression favors a small file size to the detriment offast
data access, whereas visualization methods focus on rendering
speed: the two goals oppose and compete with each other. It
must be noted that there are a few counter-examples such as
[26] where there is a reduction of redundancy without any run-
time penalty, but it remains unusual. Among the few works that
introduce compression into visualization methods, Namaneet
al. [27] proposed a QSplat compressed version by using Huff-
man and differential coding for spheres (position, radius) and
normals. The compression ratio is approximately 50% com-
pared to the original QSplat files, but the scope is limited to
point-based rendering. More recently, Yoon and Lindstrom [28]
introduced a triangle mesh compression algorithm that supports
random access to the underlying compressed mesh. However,
their file format is not progressive and therefore inappropriate
for global views of a model since it would require loading the
full mesh.

3. The Starting Point: kd-tree Compression of Vertex Posi-
tion and Hierarchical Connectivity Coding

In this section, we briefly present the method originally pro-
posed by Gandoin and Devillers [1]. The algorithm, valid in any
dimension, is based on a top-down kd-tree construction by cell
subdivision. The root cell is the bounding box of the point set
and the first output is the total number of points. Then, for each
cell subdivision, only the number of points in the first half-cell
has to be coded, the content of the second half-cell being easily
deduced. As the algorithm progresses, the cell size decreases
and the data transmitted provide a more accurate localization
of the points. The subdivision process iterates until thereis no
longer a non-empty cell with a side greater than 1 spatial unit,
such that every point is localized with the full mesh precision.

As soon as the points are separated, the connectivity of the
model is embedded (one vertex per cell) and the splitting pro-
cess is run backwards: the cells are merged bottom-up and their
connectivity is updated. The connectivity changes betweentwo
successive versions of the model and is encoded by symbols in-
serted between the geometry codes. The vertices are merged by
the two following decimating operators:

• Edge collapse, originally defined by Hoppeet al. [5] and
widely used in surface simplification, merges two adja-
cent cells under certain hypotheses. The endpoints of the
edge are merged, which leads to the deletion of the two
adjacent triangles (only one if the edge belongs to a mesh
boundary) (see Fig. 1a).

• Vertex unification, as defined by Popović and Hoppe [6],
is a more general operation that merges any two cells
even if they are not adjacent in the current connectiv-
ity. The result is non-manifold in general (see Fig. 1b)
and the corresponding coding sequence is approximately
twice as big as an edge collapse coding sequence.

The way the connectivity evolves during these decimating op-
erations is encoded by a sequence that enables a lossless recon-
struction using the reverse operators (edge expansion and vertex
split).

(a) (b)

Figure 1: (a) Edge collapse, (b) Vertex unification

If this lossless compression method reaches competitive ra-
tios and can handle arbitrary simplicial complexes, it is not ap-
propriate for interactive navigation through large meshes. Not
only does its memory footprint make it strictly impracticable for
meshes over one million vertices, but, even more constraining,
the intrinsic design of the data structure imposes a hierarchi-
cal coding of the neighborhood relations that prevents any local
refinement: indeed, given 2 connected verticesv andw in any
intermediate level of the kd-tree, it is possible to find a descen-
dantvi of v that is connected to a descendantw j of w. Therefore,
in terms of connectivity, the cell containingv cannot be refined
without refining the cell containingw. Consequently, random
access and selective loading of mesh subsets is impossible:to
visualize a single vertex and its neighborhood at a given LOD,
the previous LOD must be entirely decoded. In the following,
algorithms and data structures are presented that are basedon
the same kd-tree approach but remove these limitations.

4. Overview

The compression process ofCHuMI begins by partitioning
the space, creating a hierarchical structure called annSP-tree in
which the simplices are dispatched. In order to avoid SP-cells
containing only a few triangles, an SP-cell must contain at least
Nmin (user defined) triangles to be split. Moreover, to allow the
independent decoding of any vertex with its neighborhood, the
simplices whose vertices belong to several SP-cells are dupli-
cated into each cell. We then traverse the SP-tree in postorder
(a cell is processed after all its children have been processed).
In each SP-cell, incident kd-cells are progressively merged as
described in Sec. 3, and the corresponding coding sequence is
constructed, where geometry and connectivity codes are inter-
leaved. Merging proceeds until the minimal precision of the
SP-cell is reached: in the example given in Fig. 2, this corre-
sponds to one kd-cell merging in each dimension for a regular
SP-cell, and 3 mergings in each dimension for the root SP-cell.
When all the children of an SP-cellshave been treated, the sub-
meshes they contain are merged together (the duplicated sim-
plices collapse) to form the submesh associated withs, which
is then ready to be treated. This process runs until a single ver-
tex remains in the root SP-cell.

The refinement process runs backward. Figure 2 illustrates
its main stages: steps 1 to 6 are similar to [1]: we start with a
null precision and a single centered point. Then we sequentially
read the geometry and connectivity codes from the compressed
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Figure 2: Overview of the method

file, which progressively refine the entire mesh. In this exam-
ple, when precision reaches 3 bits (in practical cases, we gen-
erally wait until precision reaches 7 or 8 bits), the space issplit
into 4 subspaces, and the mesh subdivided into these subspaces.
Remember that border triangles and their associated kd-cells
have been duplicated during the compression stage. The 4 sub-
meshes obtained become independent, each one corresponding
to a subspace called an SP-cell whose content is directly ac-
cessible from an index pointing in the compressed file. Thus
we can select one or several SP-cells and read their associated
refinement codes in the compressed file in order to continue
the refinement process locally, depending on the camera moves.
When one of them reaches its maximum precision (4 bits in our
example), it is split again. This process is repeated recursively
until each SP-cell in the view frustum reaches a level of pre-
cision determined by its distance to the camera. Finally, we
connect the SP-cells together, handling the possible differences
in resolution to prevent border triangles from overlapping, and
the content of these cells is sent to the graphic pipeline.

5. Out-of-Core Construction

Before describing the construction process itself, we begin
with a few definitions:

An nSP-tree is a space-partitioning tree withn subdivisions
per axis. Each node delimits a cubic subspace called thenSP-
cell. Since our meshes are embedded in 3D, an internalnSP-
cell hasn3 children (wherever it is in the tree), and in our case,
thenSP-cells are evenly split,i.e. theirn3 children are the same
size.

EachnSP-cellc contains vertices whose precision at run-
time can vary according to the distance fromc to the camera.
The boundaries of the vertex precision inc are called minimal
and maximal precision ofc.

A top-simplex is a simplex (vertex, edge, triangle or tetrahe-
dron) that does not own any parent,i.e. that does not compose
any other simplex. In a triangle-based mesh, the top-simplices
are mainly triangles, but in a general simplicial complex, they
can be of any type.

5.1. Quantizing point coordinates

First, the points contained in the input file are parsed. A
cubic bounding box is extracted, then the points are quantized to
obtain integer coordinates relative to the box, according to the
maximum level of precisionp (number of bits per coordinate)
requested by the user. It should be noted that this quantization
step does not contradict the lossless characteristic of themethod
sincep can be chosen as high as needed to match the object’s
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initial precision. These points are written to a raw file (RWP)
using a classical binary encoding with constant size codes,such
that theith point can be directly accessed by file seeking.

5.2. nSP-tree construction

An nSP-tree is built so that each leaf contains the set of the
top-simplices lying in the corresponding subspace. The height
of the nSP-tree depends on the mesh precisionp (the number
of bits per coordinate): the user can choose the maximal pre-
cision pr of the root, then the precisionpl gained by each next
level is computed fromn (pl = log2n). For example, forp = 12
bits, pr = 6 bits andn = 4, thenSP-tree height is 4. Another
condition is applied: annSP-cell can be split only if the number
of contained top-simplices is at least equal to a thresholdNmin.
Consequently, the minimal precision of the leaves can take any
value, whereas their maximal precision is alwaysp. The con-
tent of the leaves is stored in a raw index file (RWI) where the
d+ 1 vertex indices that compose ad-simplex are written using
a raw binary format to minimize the disk footprint while main-
taining a fast and simple reading. Fig. 4 presents a 2D example
of such annSP-tree.

Since annSP-cell is only subdivided when it contains more
than Nmin triangles, thenSP-tree takes into account the local
density of the mesh: sparse regions are hardly divided, whereas
high density areas are heavily splitted. This simple schemehas
been chosen because it combines adaptability and low encoding
cost.

5.3. RWP and RWI file management

Even if the points and triangles are not ordered in the input
file, it is likely that the different accesses to a given point of the
RWP file during thenSP-tree construction stage will be close
in time. Consequently, the algorithm uses a cache in the main
memory, based on a hash table, to minimize the disk accesses
to vertex positions. The hash keys are modulos of the point
indices and guarantee a constant time access to cached points.

Since the final number of the triangles contained in annSP-
cell is not known in advance, memory cannot be allocated stati-
cally for each cell in the RWI file. Consequently, the algorithm
has to use block list management: the RWI file is split into con-
stant size blocks (containing 100 triangles for instance),and the
content of annSP-cell is stored in a chained list of such blocks.
As shown in Fig. 3, eachnSP-cell keeps 3 numbers in main
memory: the offset of its head block in the RWI file, the offset
of the current position (the location where the next triangle will
be written in the RWI file), and the number of triangles con-
tained in the current block (to know when a new block must
be allocated). Each block contains the offset of its successor
(or −1 for the tail block of a list) and a triangle list composed
of vertex indices pointing to the RWP file. Rather than writ-
ing in the RWI file for each triangle read in the input file, each
nSP-cell manages a buffer containing the last added triangles,
and the disk is accessed only when the cumulative size of all
the buffers exceeds some fixed valuebmax. Then the buffers are
flushed in the RWI file, from the largest to the smallest, to fa-
vor sequential writing on the disk, until their cumulative size

is brought back tobmax/2. When the content of annSP-cellc
reachesNmin triangles,c is split and the triangles (in the buffer
and in the block list of the RWI file) are spread out in the newly
creatednSP-cells. The blocks ofc are released and added to a
list of available blocks used for future allocations.

5.4. Choosing n

In order to obtain an integer forpl , n must be chosen as a
power of 2. This guarantees that any descendant of a kd-cell
contained in annSP-cellc remains insidec. Furthermore, it
prevents the kd-tree cells from overlapping twonSP-cells.

5.5. Simplex duplication

The first way to determine whether a simplex belongs to an
nSP-cellc, consists in checking whether at least one of its inci-
dent vertices lies insidec. This test is fast and suitable for most
cases, but it is imperfect since a cell can be overlapped by a
simplex without containing any of its vertices. This occursvery
rarely and can be perceived visually even more infrequently, but
this could be an issue for certain specific applications, in which
case a more accurate simplex to axis-aligned box intersection
test could be performed.

Independently of the chosen test, a simplex of the original
model can simultaneously belong to severalnSP-cells; conse-
quently, some simplices and their associated kd-cells mustbe
duplicated during the distribution in the leaves to preventholes
during visualization. Although this technique degrades slightly
compression ratios, it has been chosen for efficiency purposes.
Drawings 7—8 and 10—11 in Fig. 2 show the space partition-
ing of annSP-cell.

6. Out-of-Core Compression

In this section, we detail the successive steps of the com-
pression process, then discuss various aspects of the implemen-
tation that contribute to reaching good performance.

To achieve competitive compression ratios, the algorithm
requires a two-pass coding that makes use of two files: a semi-
compressed temporary file (SCT) and the final entropy coded
file (FEC).

0 999

412 12 890 0

6 bits

1 bit

1 bit 300 0 150

13

1 6 7 12

2 3 4 5 8 9 10 11
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Node

Leaf containing x d -simplicesx

n Postorder index

Figure 4: 2DnSP-tree example withp = 8 bits, pr = 6 bits,n = 2 andNmin =

1000
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Writing the header of the FEC file.Regardless of the statistical
data that are gathered for the final compression, some parame-
ters characterizing the original model and thenSP-tree can be
written to the FEC file at this stage. The file begins with a
header that contains all general data required by the decoder:
the coordinate system (origin and grid resolution, to reconsti-
tute the exact original vertex positions), the dimensiond of the
mesh, the numberp of bits per coordinate, the numbern of sub-
divisions per axis for the space partitioning, as well as theroot
and level precision,pr andpl .

6.1. Treating each cell of the nSP-tree

Then thenSP-tree is traversed in postorder (in red in Fig. 4)
and the following treatment is applied to eachnSP-cellc.

(a) Building the kd-tree and the simplicial complex.If c is a
leaf: the top-simplices belonging tocare read from the RWI file
and the associated vertices from the RWP file; then a kd-tree is
built that separates the vertices (top-down process) and finally
the simplicial complex based on the kd-tree leaves is generated.

(b) Computing the geometry and connectivity codes.The leaves
of the kd-tree are sequentially merged following a bottom-up
process. For each fusion of two leaves, a code sequence is
computed that combines geometry and connectivity informa-
tion. It should be noted that for rendering needs, this sequence
is enriched by specifying the orientation of the triangles that
collapse with merging. It is not a complete normal coding,
but only a binary description of each triangle orientation.The
vertex normals are computed in real-time during the render-
ing stage by averaging the triangle normals. The process is
stopped when the minimal precision ofc is reached. In large
part, the ideas of [1] are used to compute geometry and connec-
tivity codes, with some adaptations or simplifications to guar-
antee high frame rates. As for the geometry, each cell subdivi-
sion is encoded to describe one of the 3 following events: (0)

the first half-cell is non-empty, (1) the second half-cell isnon-
empty, or (2) both cells are non-empty. The theoretical cost
of log23 = 1.58 bits per subdivision is reduced to an average
of 1.2 bits using entropy coding with per-level statistical data
(high levels are composed essentially of 2 codes, whereas low
levels contain mainly 0 and 1 codes). As for the geometry, we
separate edge expansion from vertex split. Encoding both op-
erations is the same as in [1] (see Sec. 3), with the exceptionof
an additional code describing the orientation of each newlycre-
ated triangle. Using a simple prediction based on the triangle
orientation in the neighborhood, the overcost is made negligible
(around 0.01 bit per vertex). It is worth noting that none of the
prediction schemes of [1] were used, thus promoting decoding
speed and visualization efficiency. However, for a compression-
driven application (or in a context where meshes are visualized
on high-end computers), the original prediction schemes can
definitely be included.

(c) Writing the codes in a temporary file.The codes obtained
are written in a semi-compressed temporary file (SCT) using
an arithmetic coder [29]. At this stage, we cannot write in the
final entropy coded file (FEC) since statistical data are not yet
available.

(d) Merging into the parent nSP-cell.We are now left with a
kd-tree and a simplicial complex whose vertices have the mini-
mal precision ofc. To continue the bottom-up postorder traver-
sal of thenSP-tree, the content ofc must be moved to its par-
ent. If c is the first child, its content is simply transferred to
the parent. Otherwise, the kd-tree and simplicial complex of c
are combined with the parent’s current content, which implies
detecting and merging the duplicated simplices (see Sec. 7.5).

6.2. Final Output

Once allnSP-cells have been processed, statistical data over
the whole stream are available and efficient entropy coding can
be applied. The probability tables are added to the header of
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the FEC file, then thenSP-cells code sequences of the SCT file
are sequentially passed through an arithmetic coder. As geom-
etry code frequencies vary with respect to the level of detail,
the probabilities are computed independently for each level. In
our case, dynamic probabilities would not improve this static
per-level probability scheme since the independence ofnSP-
cells would require the statistical data to be reinitialized too
frequently. At the end of the file, a description of thenSP-tree
structure is added that indicates the position of eachnSP-cell in
the file. This table allows the decompression algorithm to re-
build an emptynSP-tree structure that provides direct access to
the code sequence of anynSP-cell.

6.3. Memory and Efficiency Issues

Memory management.To minimize memory occupation, each
loadednSP-cell only stores the leaves of its kd-tree. The inter-
nal nodes are easily rebuilt by recursively merging the sibling
leaves. Furthermore, the successive refinements and coarsen-
ings imply a great deal of creation and destruction of objects
such as kd-cells, simplices and lists. A naive memory manage-
ment would involve numerous memory allocations and deallo-
cations, causing fragmentation and substantial slowdowns. To
avoid this, memory pools are widely used to preallocate thou-
sands of objects in one operation, and preference is given to
object overwriting rather than deletion and recreation.

Common implementations of the simplicial complex build a
structure where eachd-simplex (d > 1) is composed ofd+1 (d−
1)-simplices. This structure is costly to maintain, and since we
do not particularly need to keep this parent-to-child structure,
we have chosen to store the following minimal data structure:
simplicial complexes are represented as a list of top-simplices,
each simplex containing references to the corresponding kd-
cells that give a direct link to its incident vertices. Conversely,
each kd-cell stores a list of its incident top-simplices.

Finally, the external memory accesses are optimized to avoid
frequent displacements of the hard disk heads. As seen in sec-
tion 5.3, pagination and buffering techniques are used to write
in the RWI file. During visualization, each time annSP-cell is
needed, its complete code is read from the FEC file and put into
a buffer to anticipate upcoming accesses.

Multi-core parallelization. The nSP-tree structure is intrinsi-
cally favorable to parallelization. The compression has been
multithreaded to benefit from the emerging multi-core proces-
sors. While file I/O remain single-threaded to avoid costly ran-
dom accesses to the hard disk, vertex splits and unifications,
edge expansions and collapses,nSP-cell splits and mergings
can be executed in parallel on differentnSP-cells. To favor ef-
fective sequential access to the hard drive and to avoid frequent
locks of the other computing threads (file I/O are exclusive),
the processing of an SP-cell starts by loading the list of con-
tained triangles from RWI and RWP files into a buffer. Then
the following steps (see Sec. 6.1) only require CPU and RAM
operations and can be performed by one thread running parallel
to the other threads. Experimentally, a global increase in per-
formance is observed between 1.5 and 2 with a dual-core CPU,
and between 2 and 3 with a quad-core CPU. This parallelization

similarly benefits the decompression and visualization stage, al-
though the performance increase is more difficult to estimate.

7. Decompression and View-Dependent Visualization

Decompression and visualization are strongly interlinked,
since the data must be efficiently decoded and selectively loaded
in accordance with the visualization context. In this section,
each component of the rendering process is detailed.

7.1. Initialization

The first step consists in reading general informations about
the mesh from the FEC file header, then using the offset table
situated at the end of the file to build thenSP-tree structure.
Once done, eachnSP-cell only contains its position in the FEC
file. To complete the initialization process, the kd-tree ofthe
root nSP-cell is created at its simplest form,i.e. one root, and
likewise the associated simplicial complex is initializedto one
vertex.

7.2. Real-Time Adaptive Refinement

At each time step of the rendering, the mesh is updated to
match the visualization frame. ThenSP-cells in the view frus-
tum are refined or coarsened so that the maximum error on the
coordinates of any vertex guarantees that its projection respects
the imposed display precision. The other cells are coarsened to
minimize memory occupation, and are not sent to the graphic
pipeline to reduce GPU computing time. According to this
viewpoint criterion, a list ofnSP-cells to be rendered with their
associated level of precision is maintained. A cell that reaches
its maximal precision is split, and the content of each childis
efficiently accessed thanks to the offset contained in thenSP-
tree structure. Conversely, if annSP-cell needs to be coarsened
at a level below its maximal precision, its possible children are
merged together.

7.3. Multiresolution Transitions

Once thenSP-cells that need to be rendered are known, two
main issues arise, both concerning the borders betweennSP-
cells. First, the simplices being duplicated in differentnSP-cells
may overlap. Second, visual artifacts can be caused by adjacent
nSP-cells with different levels of precision. Only border top-
simplices can cause these problems; the others can be straight
rendered using their representative points. Border top-simplices
are composed of at least one vertex belonging to anothernSP-
cell. The following algorithm is applied to each border top-
simplexs:

1. Let c be thenSP-cell to whichs belongs,pc the current
precision ofc, and l the list of nSP-cells to render. Let
N be the number of kd-cells (i.e. the number of vertices)
composings, ci (for i in 1, . . . ,N) thenSP-cell in which
lies theith kd-cellki composings, andpi the current pre-
cision ofci (if ci < l thenpi = pc).

2. If there is ani in 1, . . . ,N such thatpi > pc or (pi = pc

and ci index > c index), s is removed and will not be
rendered.

7



3. Else, for each kd-cellki such thatci ∈ l andci , c, the kd-
cell k′i of ci containingki is searched. The representative
point ofk′i is used to renders.

Thus, a smooth and well-formed transition is obtained between
nSP-cells that have different levels of precision (see Fig. 5).

1 2 1 2

Figure 5: Rendering of the border top-simplices between twonSP-cells with
different LODs

7.4. Encoding Geometry Before Connectivity

The main drawback of this algorithm is its tendency to pro-
duce many small triangles in the intermediate levels of preci-
sion. These triangles, which usually have a size near the re-
quested screen precision, slow down the rendering without re-
solving the well-known block effects inherent to the kd-tree or
octree approaches (see Fig. 9, left). This issue is addressed
by encoding geometry earlier than connectivity in the FEC file:
the decoder will hear of the point splitsm bits before the asso-
ciated connectivity changes. Consequently, a kd-cellc will be
composed of a connectivity code that describes the creationof
the representative vertex ofc, followed by multiple geometry
codes that describe the positions of the child vertices ofc. The
level of the descendants coded in a kd-cell depends onm. For a
3D mesh and a geometry advance ofm bits, 3m levels of chil-
dren are contained in each kd-cell. For each vertex displayed,
its future children are thus known and their center of mass can
be taken as the new refined position of the representative vertex
(see Fig. 6).

(c)(b)(a)

Figure 6: Example of rendering with the geometry advance: comparison be-
tween (a) 2 bit precision for both geometry and connectivity, (b) 2 bits for
connectivity and 3 bits for geometry (2+ 1 early bit), (c) 3 bits for both

Figure 7 shows an example of annSP-tree with a geom-
etry advance of 1 bit. During the split of annSP-cell, some
kd-cells are duplicated in several children, such as kd-cell 11 in
this example. The duplicates of the same kd-cell may evolve
differently, since their neighborhood depends on thenSP-cell
they belong to. Thus, their codes may differ, such as G11 and
G11b. The parent kd-tree can store the early geometry codes
of only onenSP-cell child. We choose the child containing the

original kd-cell. For the othernSP-cells, the missing geome-
try codes are added at the beginning of the sequence. For in-
stance, in our example,nSP-cell #0 stores G11, G23 and G24,
corresponding to kd-cells 11, 23 and 24 ofnSP-cell #2; miss-
ing G11b and G23b are stored at the beginning ofnSP-cell #1
(bold red box). Similarly, since the rootnSP-cell (#0) has no
parents, a few geometry codes must be added at its beginning.
Figures 8 and 9 illustrate the benefits of this technique in terms
of rendering. The rate-distortion curve, constructed using the
L2 distance computed by the METRO tool [30], shows a signif-
icant improvement in the intermediate levels of detail.

C0 / G3+5

nSP-cell #0

C1 / G8 C2 / G11

C3 / G17 C5 / G23+24

G0+1+2

nSP-cell #1 nSP-cell #2

0

1 2

3 5

8 11

C17 / G7217 C23b / G95b+98b23b

C48b48bC47b47b

C23 / G96+9823 C24 / G10224

C4848 C5050C3535 C4747

G11b+23b

C7272 C95b95b C98b98b C9898 C102102C9696

Ci / Gj+ki
Kd-cell n°i containing connectivity codes of kd-cell i and geometry codes of 

kd-cells j and k

Gm+n+...
At the beginning of an nSP cell , the geometry codes that were not in 

the parent nSP -cell and that are not in the following kd -tree are stored

145 146 191b 192b 199b 193 197 198 206

C8 / G358 C11 / G47+48+5011
C11b / G47b+48b11b

File encoding :

#0:G0+1+2C0G3+5C1G8C2G11... #1:G11b+23bC8G35C11bG47b+48b... #2:C11G47+48+50...

Figure 7: Example of a kd-tree with geometry before connectivity: 2D case, 1
bit earlier (i.e. 2 kd-tree levels)

7.5. Efficient Adaptive Rendering

To attain good performance in terms of smooth real-time
rendering, particular attention was paid to a number of aspects
of the implementation. During annSP-cell split, kd-cells and
top-simplices are transferred and sometimes duplicated inthe
children. A costly part of this split consists in determining the
child to which each kd-cell must be transferred and the possible
children where it must be copied (when it is incident to a bor-
der top-simplex). Rather than computing this information for
numerous kd-cells just before the split, we compute it as soon
as the kd-cell precision suffices to determine its future contain-
ing nSP-cell, store it and transfer it directly to the descendant
kd-cells. Likewise, from this information, the progression of
a top-simplex during the nextnSP-cell split can be deduced.
To smooth the computation load over time, each top-simplex is
tested either after its creation (due to a kd-cell split) or after its
duplication (due to annSP-cell split).

Conversely, merging twonSP-cells implies deleting all the
duplicated objects. To optimize this step and quickly determine
these objects, each kd-cell and top-simplex stores the kd-tree
level it was created in and whether it was created after annSP-
cell split. Another issue is that top-simplices moved into the
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Figure 8: Comparison of rate-distortion curves

Figure 9: Geometry before connectivity: normal rendering (left) and rendering
with a precision advance of 2 bits for vertex positions (right)

parentnSP-cell may refer to a duplicate kd-cell that must be
deleted. Since we cannot afford to look for the correspond-
ing original kd-cell among all the existing kd-cells, each dupli-
cate stores a pointer to its original cell. To keep this working
properly, the coarsening and refinement processes must be re-
versible: by refining annSP-cell and then coarsening it back to
its minimal precision, the same kd-cells must be obtained.

Computing the connectivity changes associated with kd-cell
splitting or merging are costly operations on which we have fo-
cused to ensure a fast rendering. First, an efficient order re-
lation is needed over the kd-cells: rather than the geometric
position, the kd-index order has been chosen, which costs a
single comparison and gives a natural order relation over the
top-simplices. In addition, it has been shown that each top-
simplex stores the kd-tree level it was created in. This value is
also used to speed up edge collapse and vertex unification dur-
ing coarsening: since it points out the top-simplices that must
be removed after merging 2 kd-cells, we only need to replace
the removed kd-cell with the remaining kd-cell in the remaining
incident top-simplices, then check whether any triangles degen-
erate into edges.

In order to improve the visualization speed, we implemented
prefetching, which can be used either to preload the whole file
into memory and thus avoid any subsequent hard drive access
(if the file fits into main memory), or to prefetch upcoming
nSP-cells from disk by trying to predict the camera position
at the next time step. However, this hardly improves the over-
all performance: for example, the computing time to obtain a
view of a close-up on the St. Matthew face is 5.8swithout any
prefetching, whereas it is 5.6swith full prefetching (whole file
preloaded). This experiment shows that, with a cumulative cost
of 0.2sover 5.8s (3.4%), the loading process is almost negligi-

ble. This can be explained by two factors: the first one is thatwe
carefully optimized external data access (buffered and sequen-
tial), the second one is that compression drastically reduces the
amount of data we need to read. This last point argues in favor
of compression, and we can assume that it will become more
and more important, in view of the increasing gap between pro-
cessing units and data access performances [31].

8. Experimental Results

We cannot fairly compare our method to previous work,
since, to our knowledge, no other method combines the features
of compression and interactive rendering. However, for refer-
ence, we provide comparisons to state-of-the-art compression
methods (single-rate or progressive, in-core or out-of-core) in
Sec. 8.1, then to state-of-the-art visualization methods in Sec.
8.2. The results presented were obtained from a C++/OpenGL
implementation of the method running on a PC with an Intel
Q6600 QuadCore 2.4Ghz CPU, 4GB DDR2 RAM, 2 RAID0
74GB 10000 RPM hard disks, and an NVIDIA GeForce 8800
GT 512MB video card. Regarding the parameter settings,n
must be big enough to allow the selection of small parts of
the mesh in a fewnSP-cell splits, but small enough to avoid
displaying too muchnSP-cells simultaneously (in which case
borders computation, for instance, could be excessively expen-
sive). A smallNmin increases the number of duplicated sim-
plices and degrades the compression performance, whereas a
big Nmin leads to a smallernSP-tree, to the detriment of the
multiresolution capability.n = 4 and 5000≤ Nmin ≤ 8000
appear to be good trade-offs.

8.1. Compression
Table 1 presents results from the out-of-core compression

stage.pr was set at 7 bits so that the number of triangles in the
rootnSP-cell remains small enough to allow this coarse version
of the mesh to be loaded in main memory. For each model,
we first indicate the number of triangles, the PLY file size, and
the size of the raw binary coding, which is the most compact
version of the naive coding: ifv is the number of vertices,t
the number of triangles andp the precision in bits for each ver-
tex coordinate, this size in bits is given by 3pv for the geom-
etry+3 t log2v for the connectivity. Then the compression rate
is given (as the ratio between the raw size and the FEC size)
with the total number ofnSP-cells. Compression times are also
provided, the column headers referring to the sections thatde-
scribe the corresponding steps of the algorithm. As expected,
the computation of code sequences (see section 6.1) is the most
expensive part. However, this step, which is directly propor-
tional to the number of vertices and triangles, benefits from
our multithreaded implementation. Finally, the table details the
memory usage (including temporary disk usage), attesting that
the method is actually out-of-core. It is worth noting that the
spatial coherence of the input model is important and can ex-
plain, for instance, why the step 6.1 is shorter forLucy than for
the T8 model, whereLucy contains more triangles. However,
we found that the scanned models we used showed in general a
good spatial coherence.
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Table 1: Compression results withp= 16 bits per coordinates,n = 4, Nmin = 8000 andpr = 7

Models
Input file (sizes in MB) Compressed file Compression time (mm:ss) Mem (MB)

Triangles Ply Raw Rate nSP-C. 5 6.1 6.2 Total Ram HD

Bali (*) 5,435,004 - 33 2.78 10,753 01:43 00:32 00:06 02:22 173 121
Wallis (*) 6,763,447 - 41 3.02 13,505 02:08 00:40 00:07 02:55 174 147

Bunny 69,451 3 0.6 3.37 65 00:01 00:02 00:00 00:03 108 1
Armadillo 345,932 7 3.3 3.95 1,217 00:02 00:03 00:01 00:06 121 6
Dragon 866,508 34 8.7 4.64 1,281 00:07 00:10 00:01 00:18 151 15

David 2mm 8,250,977 173 93 8.05 25,601 0:00:50 0:00:54 0:00:09 0:01:53 290 136
UNC Powerplant 12,388,092 503 174 7.85 38,209 0:04:26 0:01:52 0:00:09 0:06:27 291 290
EDF T5 14,371,932 388 166 7.36 27,521 0:01:28 0:01:50 0:00:16 0:03:34 290 254
EDF T8 22,359,212 693 263 6.82 31,105 0:02:47 0:03:07 0:00:26 0:06:20 289 404
Lucy 27,595,822 533 328 7.35 114,113 0:03:10 0:02:48 0:00:33 0:06:31 299 522
David 1mm 54,672,488 1,182 671 8.81 181,569 0:06:01 0:04:58 0:00:57 0:11:56 304 1035

St. Matthew 372,422,615 7,838 4,686 11.57 353,473 0:40:50 0:33:13 0:06:26 1:20:29 318 6510
(*) These models are unstructured point clouds (theTrianglescolumns gives the number of points)

Table 2: Comparison of compression ratios in bpv
Models Vertices p [32] [4] [1] [28] [22] [23] CHuMI

Bunny 35 947 12 - - 17.8 - - - 27.0
Horse 19 851 12 19.3 - 20.3 - - - 29.3
Dino 14 050 12 19.8 - - 31.8 - - 28.7
Igea 67 173 12 17.2 - - 25.0 - - 25.9

David 2mm 4 128 028 16 - 14.0 - - 306.2 - 22.3
UNC Powerplant 10 890 300 16 - 14.1 - - - - 16.3
Lucy 13 797 912 16 - 16.5 - - - - 25.9
David 1mm 27 405 599 16 - 13.1 - - 282.3 - 22.2
St. Matthew 166 933 776 16 - 10.7 - 22.9 282.1 508.0 19.4

Table 2 shows the results of our algorithm in terms of bits
per vertex compared to those of [32] (a reference in-core single-
rate method), the original in-core multiresolution algorithm [1],
the single-rate out-of-core method [4] and the single-rateout-
of-core random access method [28]. The first three are pure
compression methods, while the fourth provides a trade-off be-
tween compression and random accessibility, very useful for
applications that need mesh traversal but not well-suited to vi-
sualization. The two non-compressive visualization methods
[22] and [23] have been added for comparison purposes. Unfor-
tunately, we were not able to compare with [17] (to our knowl-
edge, the sole out-of-core and progressive compression algo-
rithm) since the authors only give connectivity rates. Compared
to compression methods that do not allow interactive visualiza-
tion (first three columns), an average extra cost ranging from
15% to 80% is observed, mainly due to the redundancy induced
by space partitioning (5—7% of the original triangles are du-
plicated) and the fact that complex prediction is bypassed to
guarantee high frame rates during rendering.

To show that the method behaves well with point clouds
(possibly unbalanced) and does not rely on the mesh connec-
tivity, two examples of unstructured models have been addedto
our experimental pool:Bali andWallis.

8.2. Decompression and Visualization

Figure 10 presents a few examples of different LODs of the
St. Matthewmodel with the times observed to obtain a given
view distance by refinement or coarsening of the previous one
(or from the beginning of the visualization for view (a)). They
may seem high but it must be noted that during navigation, the
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Figure 11: Triangles per second (TPS) and frames per second (FPS) over the
time during the accompanying St. Matthew video [33]

transition from one view to the next one is progressive and the
user’s moves are usually slow enough to allow smooth refine-
ments. This is why the best way to appreciate the algorithm’s
behavior is to manipulate the viewer or watch the accompany-
ing videos [33]. All the results have been produced with a max-
imal screen space error tolerance of 1 pixel. To appreciate the
data’s decoding speed, Fig. 11 presents the number of triangles
rendered per second during theSt. Matthewvideo. Our decoder
can render up to 200 million triangles per second (tps), withan
average of about 173 million when it runs at full speed (between
t = 30 to t = 65sec. in Fig. 11). For comparison purposes, [20]
renders up to 3 Mtps, [22] an average of 70 Mtps, and [23] an
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Figure 10:St. Matthewrefinement times: 0.7 s to display (a), 1.2 s from (a) to (b), 2.0 s from (b) to (c), 1.7 s from (c) to (d); coarsening times: 0.8s from (d) to (c),
0.6 s from (c) to (b), 0.4 s from (b) to (a).

average of 45 Mtps. Of course, this comparison would not be
fair without taking into account each method’s year of publi-
cation and the progress in hardware performance. In addition,
[22] and [23] update the model according to viewing distance
and direction, whereasCHuMI uses a distance criterion only.
On the other hand, it must be remembered that none of these
visualization methods achieves compression: for instance, [22]
and [23] enlarge the original raw files, respectively, by 10%and
80% on average, as shown in Tab. 2. Fig. 12 shows the number
of triangles which are created and deleted per second; zooming
in leads to the creation of up to 310,000 triangles per second,
while up to 565,000 triangles per second can be destroyed dur-
ing zooming out. It must be added that the small polyhedral
holes that can be observed on the captures and especially on the
videos are not artifacts of the viewer but come from the original
meshes. It is worth noting that the transitions between thek and
k+1 levels of precision of annSP-cell, easily perceptible on the
video, occur quite rarely (more precisely, when the zoom fac-
tor on the SP-cell is doubled, since one additional bit on point
coordinates doubles the rendering accuracy). Consequently, in
most cases, if such a transition does not occur during a zoom,
this does not mean that the refinement process is stuck but that
the threshold is not reached.
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Figure 12: Stacked column chart showing the number of triangles de-
coded/deleted per second over the time during the St. Matthew video[33]

9. Conclusion and Future Work

As seen in Sec. 8, the data structures and algorithms pre-
sented in this article achieve good results compared to the state
of the art, at the same time as an out-of-core lossless compres-
sion method, and as an interactive visualization method forar-
bitrary untextured meshes (in terms of type and size), thus of-
fering a valuable combination for numerous applications. How-
ever, we are currently improving several points, which should
remove the method’s main limitations. Our first perspective
aims at reducing latency in the navigation stage. To achieve
better performance in this respect, at least three paths canbe ex-
plored: cache-oblivious optimizations, more GPU-friendly data
structures such as patch-based LOD, and the intensive use ofthe
GPU via shader programming. Furthermore, we believe that it
is still possible to improve the compression ratios by introduc-
ing new predictive schemes. Secondly, although theoretically,
the method can address meshes in any dimension, some im-
portant optimizations must be done to handle volume meshes
in good conditions. For instance, the edge collapse and vertex
unification operators have to be efficiently extended to tetrahe-
dra. In addition, occlusion culling becomes a major issue inthe
volume case. Finally,CHuMI is based so far on a pure distance
criterion to set the precision of displayed triangles. We think
that it could be favorably extended to use a hierarchy of sur-
face patch normals and thus enable updates according to view
direction as well as distance.
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